
Package

2

Intoduction: Packages
 Provides a mechanism for grouping a variety of

classes and / or interfaces together.
Grouping is based on functionality.

Benefits:
The classes contained in the packages of other

programs can be reused.
 In packages, classes can be unique compared with

classes in other packages.
 Packages provides a way to hide classes.

3

Packages
 Two types of packages: 1. Java API packages 2. User defined

packages
Java API Packages:
 A large number of classes grouped into different packages

based on functionality. Examples:
1. java.lang
2. java.util
3. java.io
4. java.awt
5.java.net
6.java. applet etc.

4

Package

Color

Graphics

Image

Java

awt
Package containing awt package

Package containing classes

5

Accessing Classes in a Package

1. Fully Qualified class name:
Example:java.awt.Color

2. import packagename.classname;
Example: import java.awt.Color;

or
import packagename.*;
Example: import java.awt.*;

 Import statement must appear at the top of the file,
before any class declaration.

6

Creating Your Own Package
1. Declare the package at the

beginning of a file using the
form

package packagename;
2. Define the class that is to be put

in the package and declare it
public.

3. Create a subdirectory under the
directory where the main source
files are stored.

4. Store the listing as
classname.java in the
subdirectory created.

5. Compile the file. This creates
.class file in the subdirectory.

Example:
package firstPackage;

Public class FirstClass
{

//Body of the class
}

7

Example1-Package
package p1;
public class ClassA
{

public void displayA()
{
System.out.println(“Class A”);
}

}

import p1.*;

Class testclass
{

public static void main(String str[])
{

ClassA obA=new ClassA();
obA.displayA();

}

} Source file – ClassA.java

Subdirectory-p1

ClassA.Java and ClassA.class->p1

Source file-testclass.java

testclass.java and testclass.class->in
a directory of which p1 is
subdirectory.

8

Application: Creating Packages

Consider the following declaration:
package firstPackage.secondPackage;
This package is stored in subdirectory named
firstPackage.secondPackage.

A java package can contain more than one class
definitions that can be declared as public.

Only one of the classes may be declared public and
that class name with .java extension is the source file
name.

9

Example2-Package
package p2;
public class ClassB
{

protected int m =10;
public void displayB()
{
System.out.println(“Class B”);
System.out.println(“m= “+m);
}

}

import p1.*;
import p2.*;

class PackageTest2
{

public static void main(String str[])
{

ClassA obA=new ClassA();
Classb obB=new ClassB();
obA.displayA();
obB.displayB();

}
}

10

Example 3- Package
import p2.ClassB;
class ClassC extends ClassB
{

int n=20;
void displayC()
{
System.out.println(“Class C”);
System.out.println(“m= “+m);
System.out.println(“n= “+n);
}

}

class PackageTest3
{

public static void main(String args[])
{

ClassC obC = new ClassC();
obC.displayB();
obC.displayC();

}
}

11

Package
package p1;
public class Teacher
{………….}
public class Student
{……………..}

package p2;
public class Courses
{………..}
public class Student
{………………..}
import p1.*;
import p2.*;
Student student1; //Error

Correct Code:
import p1.*;
import p2.*;

p1.Student student1;
p2.Student student2;

12

Default Package

If a source file does not begin with the
package statement, the classes contained in the
source file reside in the default package

The java compiler automatically looks in the
default package to find classes.

13

Finding Packages
 Two ways:

1.By default, java runtime system uses current directory as
starting point and search all the subdirectories for the package.
2.Specify a directory path using CLASSPATH environmental
variable.

14

CLASSPATH Environment
Variable

The compiler and runtime interpreter know how to
find standard packages such as java.lang and java.util

The CLASSPATH environment variable is used to
direct the compiler and interpreter to where
programmer defined imported packages can be found

The CLASSPATH environment variable is an
ordered list of directories and files

15

CLASSPATH Environment Variable

To set the CLASSPATH variable we use the
following command:
set CLASSPATH=c:\

 Java compiler and interpreter searches the user
defined packages from the above directory.

To clear the previous setting we use:
set CLASSPATH=

16

Example1-Package[Using CLASSPATH]
package p1;
public class ClassA
{

public void displayA()
{
System.out.println(“Class A”);
}

}

import p1.ClassA;

Class PackageTest1
{

public static void main(String str[])
{

ClassA obA=new ClassA();
obA.displayA();

}}

Source file –
c:\p1\ClassA.java

Compile-javac
c:\p1\ClassA.java

Class file in –
c:\p1\ClassA.class

Source file-
c:\java\jdk1.6.0_06\bin\PackageTest1.
java

Compile-javac PackageTest1.java

Copy –PackageTest1.class -> c:\

Execute-java PackageTest1

17

Example2-Package[Using CLASSPATH]
package p2;
public class ClassB
{

protected int m =10;
public void displayB()
{
System.out.println(“Class B”);
System.out.println(“m= “+m);
}

}

import p1.*;
import p2.*;
class PackageTest2
{

public static void main(String str[])
{

ClassA obA=new ClassA();
Classb obB=new ClassB();
obA.displayA();
obB.displayB();} }

Source file –
c:\p2\ClassB.java

Compile-c:\p2\ClassB.java

Class file in –
c:\p2\ClassB.class

Source file-
c:\java\jdk1.6.0_06\bin\PackageT
est2.java

Compile-javac PackageTest2.java

Copy –PackageTest2.class -> c:\

Execute-java PackageTest2

18

Example 3- Package[Using CLASSPATH]
import p2.ClassB;
class ClassC extends ClassB
{

int n=20;
void displayC()
{
System.out.println(“Class C”);
System.out.println(“m= “+m);
System.out.println(“n= “+n);

}
}

class PackageTest3
{

public static void main(String args[])
{

ClassC obC = new ClassC();
obC.displayB();
obC.displayC();

}
}

Source file – c:\ClassC.java

Compile-c:\ClassC.java

Class file in –c:\ClassC.class

Source file-
c:\java\jdk1.6.0_06\bin\PackageT
est3.java

Compile-javac PackageTest3.java

Copy –PackageTest3.class -> c:\

Execute-java PackageTest3

19

Adding a Class to a Package

Every java source file can contain only class declared
as public.

The name of the source file should be same as the
name of the public class with .java extension.
package p1;

public ClassA{
……………}

Source file :
ClassA.java

Subdirectory: p1

package p1;

public
ClassB{…………}

Source file: ClassB.java

Subdirectory:p1

20

Adding a Class to a Package
1.Decide the name of the package.
2.Create the subdirectory with this name under
the directory where the main source file is
located.
3.Create classes to be placed in the package in
separate source files and declare the package
statement

package packagename;
4. Compile each source file. When completed the
package will contain .class files of the source files.

21

public/package/private scope
 Scope is concerned with the visibility of program

elements such as classes and members

Class members (methods or instance fields) can be
defined with public, package (default), private or
protected scope

A class has two levels of visibility:

-public scope means it is visible outside its
containing package

- default scope means it is visible only inside the
package. (package scope/ friendly scope)

22

 A class member with public scope means it is visible
anywhere its class is visible

 A class member with private scope means it is visible
only within its encapsulating class

 A class/class member with package scope means it is
visible only inside its containing package

 A class member with protected scope means it is visible
every where except the non-subclasses in other package.

public/package/private scope

23

Example 1
package my_package;package my_package;

class Aclass A // package scope// package scope
{{

// A’s public & private members// A’s public & private members
}}

public class Bpublic class B // public scope// public scope
{{

// B’s public and private members// B’s public and private members
}}

24

package my_package;package my_package;

class Dclass D
{{

// D’s public & private members// D’s public & private members

// Class D ‘knows’ about classes A and B // Class D ‘knows’ about classes A and B

private B b;private B b; // OK // OK –– class B has public scopeclass B has public scope
private A a;private A a; // OK // OK –– class A has package scopeclass A has package scope

}}

Example-2

25

package another_package;package another_package;
import my_package.*;import my_package.*;

class Cclass C
{{

// C’s public & private members// C’s public & private members

// class C ‘knows’ about class B // class C ‘knows’ about class B

private B b;private B b; // OK // OK –– class B has public scopeclass B has public scope

}}

Example-3

26

Example 4
package my_package;package my_package;
class Aclass A
{{

int get() { return data; }int get() { return data; } // package scope// package scope
public A(int d) { data=d;}public A(int d) { data=d;} // public scope// public scope
private int data;private int data; // private scope// private scope

}}

class Bclass B
{{

void f()void f()
{{

A a=new A(d);A a=new A(d); // OK A has package scope// OK A has package scope
int d=a.get();int d=a.get(); // OK // OK –– get() has package scopeget() has package scope
int d1=a.data;int d1=a.data; // Error! // Error! –– data is privatedata is private

}}
}}

27

Levels of Access Control
public protected friendly

(default)
private

same
class

Yes Yes Yes Yes

Subclass in
the same
package

Yes Yes Yes No

Other class
in the same
package

Yes Yes Yes No

Subclass in
other
packages

Yes Yes No No

Non-
subclass in
other
package

Yes No No No

